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Abstract
Magnetic surveys have been widely used in mineral exploration 
for many decades as a mean of obtaining structural and 
geological information. Airborne magnetic surveys are quite 
common providing large areal coverage over a short span of 
time, but require complex logistics involving aircraft (helicopter 
or fixed wing), fuel licenses and transportation, as well as 
complex health and safety concerns. An alternative is to do 
ground magnetometer surveys but field production is not as 
efficient as with airborne surveys. The necessity to obtain 
high resolution magnetic information over intermediate-size 
areas that could be considered too large for ground work 
production and too small to justify aircraft logistics, has opened 
the possibility of using drones as the magnetic sensor carriers. 

Introduction and Survey Area
Freeport-McMoRan (FMI) is one of the senior mining corporations 
in the world leading the use of unmanned aerial vehicle (UAV) 
magnetometer surveys projects. In January 2020, and as part of 
their exploration programs, FMI commissioned Arce Geofísicos 
to conduct a survey for their Rapsodia project in Southern Perú. 

The survey was conducted for FMI’s Peruvian subsidiary, 
Exploraciones Antakana S.A.C. and the area is located next 
to the city of Bella Unión in Arequipa, approximately 570 
kilometers South of Lima, accessible through the Panamerican 
Highway. 

Rapsodia is located in the Peruvian Coastal Batholith region. The 
Cretaceous age batholith consists of the Acai diorite intruding 
into the early Cretaceous Huallhuani formation, composed of 
quartz sandstones with interbedded grey limolites.

Survey design and flight 
parameters
The survey consisted of an original plan of 916 line kilometers 
of North-South profiles with a line separation of 100 meters, 
of which 832 kilometers was completed. The area was split 
multiple blocks with 2 to 3 kilometers length, considering that 
the maximum flying time was around 25 minutes and between 
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10 and 15 kilometers per flight, depending of the terrain, 
weather and battery performance. Figure 3 shows the blocks 
and takeoff and landing base locations used at the project.

The survey was performed over 18 days of production, 
considering 4 additional days of mobilization/demobilization 
and travel time from Lima. The crew consisted of 1 geophysicist 
and drone pilot, 1 field geophysicist QC, 1 geophysicist operator, 
4 local helpers and 1 senior geophysicist based in Lima.

The daily production was:

Minimum: 9.12km per day

Maximum: 95.22 km per day

Average: 46.26 km per day

Mission planning and monitoring
The UAV used was a quadricopter manufactured and 
customized by BFD Systems 1400-SE8, powered by 4 LiPo 
batteries of 22000 mA/h capacity each, with a flight computer 
on board from Ardupilot (Cube) and 8 weather sealed motors, 

which provide up to 26 minutes endurance flight time, using a 
maximum payload of 12.25 kg in normal conditions (Figure 4A). 
In addition, the copter has a laser altimeter with a maximum 
measuring height of 100m.

A high precision potassium-vapor GEM Systems magnetometer 
was used. This sensor was part of the GEM Airbird towing 
system (Figure 4B). This sensor offers very high sensitivity with 
small heading error with an absolute accuracy of 0.1nT and 
sampling rate of 10Hz. The Airbird ensured a smooth operation 
and high quality readings due to its mechanical stability and 
aerodynamics. 

The survey area was provided by the client to prepare the 
survey plan and flight lines. Based on the terrain access and 
station locations, the survey area was split into several polygon 
zones, exported to kml and used to create the flight mission 
plan using the UgCS software version 3.4.609. The following 
parameters were considered:

Line separation: 100m

Flight height: 40m ~ 50m ground clearance. 

Extended distance outside each block: 250m to achieve 500m 
overlap.

UgCS software allows mission planning in  terrain-following 
mode, enabling a very-low- flying vehicle to automatically 
maintain a relatively constant altitude above ground level, ideal 
for this type of surveys. The accuracy of the default SRTM 
database of UgCS varies, therefore, the software allows import 
a detailed DTM (Digital Terrain Model) for precise and safe flight 
altitude control. For the project a DTM with 10m resolution was 
purchased from Intermap (https://www.intermap.com/nextmap).

https://www.intermap.com/nextmap
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It is critical to have a high resolution DTM prior to commencing 
the UAV magnetic survey, particularly in areas with difficult 
topography, to increase reliability in terrain following, considering 
that lower ground clearance yields better magnetic field 
sensitivity and resolution. The flight height programmed in the 
survey varied from 40 to 50 meters above ground, considering 
the tow cable’s length of 10 meters and uneven topography 
in specific areas as well as a desirable flight speed of 15 m/s.

Real time magnetic measurements monitoring was performed 
with the Airbird ground control software, which provided not 
only sensor readings and field strength, but also laser altimeter 
ground clearance.  

Acquisition and Data Processing
Quality Control

Before the start of the survey, Geosoft scripts were generated 
to make quick quality control and pre-processing of collected 
data. During daily QC, it became clear that the best time to 
acquire magnetic data was early in the morning; this is mainly 
due to the fact that in those hours there is less wind, improving 
sensor aerodynamics, obtaining cleaner readings. The best 
hours for flight were from 6 AM to PM (noon).

Right after the copter landed in each sortie, survey data were 
downloaded from the Airbird using its telemetry communication 
and imported into Oasis Montaj for QC. The raw data were 
always maintained in its original form in a channel and all further 
processing was done in new channels.

There were methods used to handle the field data:

Case 1: Dead-zones. To correct these, a filter was applied 
over the channel “L” coming from the raw data, which placed 
dummy values at all rows where the logged value was “0”. 
These sections or “Dead Zones” of the dataset are caused 
by the magnetic sensor coming out of signal-locking range, 
usually due to crosswind and low speed performance. In 
Figure 7 below, we can see the raw signal (A) with a dead 
zone, when the sensor was not coupled with the magnetic field 
(lock parameter L=0) and the signal pre-processing once the 
unlocked information was filtered and interpolated using the 
Akima method (B).

As a next step, a fourth difference filter was applied over 
all data points exceeding the sensor absolute precision 
specification of 0.1nT, in accordance to the manufacturer's 
specifications. The fourth difference filter is widely used in 
aerial magnetic surveys to identify data noise that exceeded 
acceptable parameters. 

Case 2: Data Jumps. The magnetic data acquired was very 
clean for most of the survey because the sensor was towed with 
a 10 meter kevlar cable, far enough from the copter, reducing 
magnetic noise effects. However, in presence of crosswind and 
rough topography, the sensor makes sudden movements when 
climbing up or descending, producing a low speed motion and 
velocity changes causing instability in the sensor pitch. For this 
case, a jump constant difference was calculated, and the signal 
was recovered and interpolated using Akima method when 
the distance did not exceed more than 100 meters of ground 
distance, otherwise the line would be repeated under better 
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conditions. Figure 8 shows data jumps with raw and filtered/
interpolated signal.

The resulting grid was an error grid with stripes parallel to the 
line direction. The error value was sampled from the grid and 
cleaned through a Low Pass filter to separate the high frequency 
geological signal from the longer wavelength levelling error 
(Geosoft, 2020). A cutoff wavelength of 1000 fiducials were used 
(10 times the line separation: 10 x 100m = 1000 fiducials). Once 
the error was filtered, this value was subtracted from the original 
grid and a leveled grid was obtained as shown in Figure 9B. 

Reduction to the magnetic pole 
for low latitudes (RTPLL)
The reduction to the pole is a geophysical tool frequently used 
to estimate and simplify location, intensity and symmetry of 
magnetic anomalies. When a magnetic survey is performed, all 
magnetic responses are affected by distortions of their shape, size 
and location caused by survey location within magnetic latitudes, 
making this procedure an important step to understand results. 
Moreover, a standard Reduction to the Pole (RTP) procedure 
commonly yields mathematical artifacts when the data was 
obtained close to the magnetic Equator (+/- 30 degrees of 
magnetic latitude). In this case, an RTPLL was performed (Figure 
10) considering an IGRF intensity of 23992.2 nT, a regional field 
inclination of -7.3 degrees and a declination of -3.1 degrees.

The strong magnetic anomalies in the Northern area may be 
attributed to the presence of Coastal Batholith rocks and the 
high zone in the center of the map could be interpreted as the 
influence of the Cerro Batidero in contrast with the quaternary 
colluvial type deposits. 

The South zone is magnetically flat, and characterized by long 
wavelength responses attributed to the possible geological 
configuration of the basement and the overlying sedimentary 
cover.

Corrections
Magnetic field readings were compensated by diurnal drift using 
a GEM GSM-19T base station with a proton precession sensor 
with GPS incorporated for time synchronization with the Airbird. 
Daily base station data was cleaned using a non-lineal filter to 
remove  spikes produced by geological noise, geomagnetic 
storms or sun activity, as part of the daily quality control.

The magnetic heading effect was determined on site by flying 
a North-South oriented pattern, at a height of 150 meters over 
terrain. At least one pass on each direction was flown over a 
recognizable magnetically “flat” feature on the ground to obtain 
sufficient statistical information to estimate the heading error. 
A heading effect was considered for lines flown from North to 
South of -0.331 nT.

A lag test was performed over the data to determine the time 
difference between the magnetometer readings and the GPS 
System location in the bird, applying 1 meter back, since that is 
the distance position between the center of the bird where the 
GNSS antenna is located and magnetometer sensor position. 
A negative lag will shift the data forward in time, in this case a 
lag of -1 fiducial was determined by the average speed channel 
(10 m/s), and the magnetometer frequency of 10 Hz.

Microleveling
Since tie-lines where not considered from the beginning of the 
survey, the levelling process was not applied, but a microleveling 
procedure was used. 

Once the data was cleaned and corrected by diurnal, lag and 
heading correction, levelling problems were noticed along 
survey lines like data shifts in between lines, caused for the most 
part  by differences in ground clearances in the line overlaps 
between blocks. This resulted in responses biased to the used 
line orientation as shown in Figure 9. To correct this, an FFT 
decorrugation filter was applied to yield a grid that contained 
the leveling error; a combination of a Butterworth High-Pass 
filter combined with a Directional Cosine filter was used. The 
first one, cleaning up the low-frequency noise, and highlighting 
the high-frequency trends (Rioul et al., 1991), while the second 
one removing directional noise using the flight line azimuth. 
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Analytic Signal of Vertical 
Integration (ASVI)
The ASVI can be defined as the square root of the sum of the 
squares of the derivates in the X, Y and Z directions of the 
Vertical Integration of the TMI. The objective of this filter is to 
better define the edges of magnetic and non-magnetic bodies 
that cause the anomalies, and provide a cleaner response than 
a standard Analytic Signal calculation.

Tilt Derivative (TDR)
The tilt derivative was quite helpful to map shallow responses 
and structures. This filter has the advantage of enhancing and 
sharping the magnetic trends yielding geophysical structures. 

Geophysical Structures
The TDR map was used for geophysical structural interpretation, 
as its theory indicates that the zero contour line will be located 

at or very close to the a fault or geological contact. Tracing the 
zero contour line of the TDR map delineates the subsurface 
structure of the area and thus drawing possible faults that 
characterize the area (Esmat E., et al., 2015).

Two fault systems were distinguished in the survey area; the first 
one with a NE-SW orientation following general Andean regional 
fault trends, and the second one with a NE-SE orientation. 
Regional faults presented in orange were downloaded from 
the Geocatmin system of the INGEMMET (Instituto Geológico, 
Minero y Metalúrgico of Perú). This public system (https://
geocatmin.ingemmet.gob.pe), offers geological and mining 
information of Peru and served like starting point to identify 
the rest of geophysical structures (black lines) using the TDR 
map, as shown in Figure 13.

Magnetic Modelling
An MVI 3D modelling was performed on the magnetic dataset. 
One of the main advantages of using an MVI inversion over a 
standard magnetic susceptibility inversion is its capability of 
obtaining more realistic results when magnetic remanence is 

https://geocatmin.ingemmet.gob.pe
https://geocatmin.ingemmet.gob.pe
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present in the data. This is why MVI inversions are usually easier 
to interpret with local geology than magnetic susceptibility 
inversions. An MVI inversion produces for each cell in space, a 
vector which indicates direction of magnetization and intensity. 
The inversion results may be seen in Figure 14.

The inversion led some interesting results, which are not easily 
interpretable from the geological map as most of the area 
has quaternary sedimentary cover, except on the Northern 
and Northeastern edges of the survey area. The Huallhuani 
sandstones in the NE edge have no response in the magnetic 
inversion and the Acarí batholith shows as a magnetic high 
that is trending East-West and then South East. High amplitude 
magnetization responses are seen in the South and South 
Eastern areas. Magnetic high responses seem to be forming 
into a circular shape with a magnetic low center located under 
recent sedimentary cover.

Flight and Survey Safety
When a geophysical survey is carried out, it is of utmost 
importance to operate under the highest standards of safety for 
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both the crew and geophysical equipment. A UAV survey is not 
the exception, due to the increased hazards and potential risks 
associated with the use of an aircraft, particularly in surveys 
with difficult topography. Some fundamental aspects have to 
be guaranteed, such as good radio telemetry control range, 
high-resolution Digital Elevation Model, direct line of sight with 
the UAV and a good programming system which makes the 
aircraft properly follow terrain with a safe ground clearance.

On February 22th, 2020, during the ferry part of a flight, a crew 
member noticed the drone was flying at lower altitude than 
expected, and when the pilot tried to get control of the UAV 
though the remote controller, there was no communication 

between the UAV and both the remote control and base station 
radios. A note must be made that there is always a small delay 
when sending an emergency command to a UAV and in this 
particular case, it would’ve been too late anyway to make the 
UAV fly higher or return to base. A description of the accident 
is shown in the Figure 16.

When the causes for the accident were analyzed, the crew 
noticed that the software did not take into account the DTM 
for terrain following between the copter homepoint and the 
beginning of the survey lines, in order to keep ground clearance 
at a safe level, so the aircraft did not do any terrain draping 
in this part of the flight, but maintained a constant altitude, 
resulting in a crash 10 meters before reaching the top of a 
small hill.

Even though flight programming software allows users to follow 
terrain using a previously loaded DEM, these do not consider 
waypoints to modify ground clearance automatically in the area 
between the base and survey lines.  To guarantee a safe flight 
an additional waypoint path should be programmed manually 
with enough waypoints from the homepoint to the beginning 
of the survey line path as well as from the end of the flight to 
return to the landing base once the flight is complete. This is 
critical for in a project with difficult topography.

Further issues were found regarding the difference between 
the DTM purchased online versus the DTM processed by 
using the laser altimeter data from the Airbird system, is shown 
in Figure 17. The processed DTM is a much smoother and 
realistic depiction of the ground morphology, considering the 
low and high points when crossing through creeks, where a 
major crash may occur due the low flight. Therefore, it is highly 
recommended to conduct a lidar or photogrammetric drone 
survey to obtain a higher resolution DTM prior to carrying 
out any UAV magnetic survey. This will drastically reduce the 
possibility of an accident and permit a low ground clearance 
flight, which will also improve magnetic sensor resolution.

Conclusions
The UAV magnetic survey in the Rapsodia project provided a 
large coverage of line kilometers over a relatively short span of 
time. This is particularly useful if there is a time limit to complete 
a particular survey.

UAV magnetometer surveys are useful to cover areas that may 
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be too large for a ground survey and too small to justify the 
logistical costs and ferry time of a helicopter borne magnetic 
survey.

UAV magnetometer surveys may be performed with small 
ground clearances and line separation. They may also be 
deployed quickly in comparison to a manned airborne 
survey. They may be used to make detailed infill surveys over 
existing regional magnetic maps, such as those available from 
governments.

This type of survey does have several limitations, particularly 
due to civil aviation regulations in various countries where it is 
mandatory to keep line of sight with the UAV, sometimes not 
to be able to exceed a 1.5km distance. Survey bases need 
to be placed in centric locations and in a desirable design 
to optimize the survey, but this strongly depends on ground 
access and surrounding infrastructure in roads, social permits, 
topography and vegetation. 

Ground control station software available to run the mission 
plan still needs to be improved to safely conduct these type of 
surveys. Our accident is a perfect example of the software lacking 
some safety features, but these are being constantly improved 
as UAV usage is rapidly evolving into several applications.

Survey precision was excellent. The potassium vapor sensor 
provided very stable readings with a very small heading error. 

The Airbird system provides complete information from the 
sensor location, including pitch, roll and yaw, laser altimeter, 
accelerometers, and GPS. All this information proves to be quite 
useful data during processing and helps explain the dead zones 
or jumps. 

Due to the accident we suffered, several engineering, software, 
and best practice activities have been implemented on the 
UAV use, mission planning and use of high resolution DTM 
information, to improve safety considerably. A new anti-collision 
system is being implemented on the copter as well as a new 
telemetry backup system is being added to increase awareness 
from the pilot, observers and field geophysicist. The pre-flight 
check list has also been improved and expanded.
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